
Nonlocal model of dissociative electron attachment and vibrational excitation of NO

C. S. Trevisan,1 K. Houfek,2,* Z. Zhang,2 A. E. Orel,1 C. W. McCurdy,2,3 and T. N. Rescigno2
1Department of Applied Science, University of California, Davis, California 95616, USA

2Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Department of Applied Science and Department of Chemistry, University of California, Davis, California 95616, USA

sReceived 14 January 2005; published 27 May 2005d

We present the results of a study of elastic scattering and vibrational excitation of NO by electron impact in
the low-energys0–2 eVd region where the cross sections are dominated by resonance contributions. The3S−,
1D, and1S+ NO− resonance lifetimes are taken from our earlier studyfPhys. Rev. A69, 062711s2004dg, but
the resonance energies used here are obtained from different configuration-interaction studies. Here we employ
a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficien-
cies of the local complex potential model we employed in our earlier study, and gives cross sections in better
agreement with the most recent experiments. We also present cross sections for dissociative electron attach-
ment to NO leading to ground-state products, O−s2Pd+Ns4Sd. The calculations show that, while the peak cross
sections starting from NO in its ground vibrational state are very smalls,10−20 cm2d, the cross sections are
extremely sensitive to vibrational excitation of the target and should be readily observable for target NO
molecules excited ton=10 and above.
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I. INTRODUCTION

Low-energy electron interactions with nitric oxide are of
interest in a broad range of chemical, physical, and atmo-
spheric processes. NO is also used as a plasma gas and plays
important functional roles in a variety of physiological sys-
tems. Although there have been a number of experimental
studies on the low-energy behavior of the electron-NO colli-
sion cross sectionsf1–9g, relatively little has been done on
the theoretical frontf10,11g, particularly in the energy region
below 2 eV, which is dominated by negative ion resonances.
Calculations in this energy range were initiated in our previ-
ous studysZhanget al. f12gd, which presentedab initio de-
terminations of elastic and vibrational excitation cross sec-
tions using the local complex potential or “boomerang”
model, with resonance parameters extracted from electronic
fixed-nuclei variational scattering calculations. While those
calculations were successful in capturing the essential fea-
tures of the measured cross sections and confirmed the inter-
pretation that the prominent features in the elastic and vibra-
tional excitation cross sections arise from3S− and 1D
negative ion states, they also revealed deficiencies in the lo-
cal complex potential model, most notably in the threshold
behavior of the cross sections, that arise when the transiently
excited vibrational levels of the anion are energetically close
to the vibrational levels of the neutral target.

In our previous studyf12g we speculated that nonlocal
effects—beyond the boomerang model—would be needed to
achieve quantitative agreement with measured cross sections,
particularly for the first peaks in the cross sections for exci-
tation of higher vibrationally excited states. Interesting ex-

perimental determinations of the cross sections by Allan
f9,13g have since appeared, which differ near threshold from
the experimentsf5,7,8g with which we originally compared.
The new measurements do not show the dramatic suppres-
sion of peaks near threshold that some earlier experiments
suggested. These facts prompted the present study, in which
the nuclear dynamics problem is treated with a more elabo-
rate nonlocal resonance model that should be better able to
treat the threshold region.

The present study also includes the calculation, using the
same nonlocal model, of dissociative electron attachment
sDAd cross sections, from both ground and vibrationally ex-
cited target states, that proceed through the3S− anion state
and produce ground-state fragments. Near-threshold DA to
NO has been studied for several decadesssee Brunt and Ki-
effer f14g, Krishnakumar and Srivastavaf15g, and references
thereind and, in principle, can proceed via the following three
channels:

e+ NO→ O−s2Pd + Ns4Sd, s1d

e+ NO→ O−s2Pd + N*s2Dd, s2d

e+ NO→ O−s2Pd + N*s2Pd. s3d

Although several experimental studies have observed DA
associated with channelss2d and s3d, detection of DA chan-
nel s1d has been controversial. Orient and Chutjianf16g
claimed to have measured ground-state fragments of reaction
channele+NO→O−s2Pd+Ns4Sd, reporting it as the most
abundant channel in the DA to NO. However, several studies
performed afterwardf17–20g found no indication of the oc-
currence of ground-state fragments in their measurements,
consistently reporting channels2d as the major DA channel,
with reaction channels3d making a smaller contribution. Our
calculations show that, although cross sections that proceed
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through reaction channels1d are negligibly small when DA
proceeds from the vibrational ground state of NO, signifi-
cantly enhanced cross sections are obtained when the target
is vibrationally excited.

The fixed-nucleiR-dependent energies and widths of the
various negative ion states form the basis for a study of the
nuclear dynamics. Our present study uses the resonance
widths of Zhanget al. f12g, which were in turn obtained
from the results of fixed-nuclei complex Kohn variational
scattering calculations. The calculated cross sections are
found to be extremely sensitive to the relative positions of
the neutral and negative ion states. We have therefore carried
out large-scale configuration interactionsCId calculations in
an attempt to better position the neutral NO and the3S−, 1D,
and1S+ anion states. These CI curves lie closer to the semi-
empirical curves obtained by Teillet-Billy and F. Fiquet-
Fayardf21g and provide a more accurate description of the
low-lying excited states of NO− than the coupled-cluster
sCCd potential curves employed in the previous study of
Zhanget al.

Using these potentials we have computed elastic and vi-
brationally inelastic cross sections to compare the results
from the local complex potentialsor boomerangd model, the
local complex potential model modified by the introduction
of “barrier penetration factors,” and a nonlocal model de-
scribed below. The nonlocal model was used in our final
calculations of vibrational excitation and dissociative attach-
ment. As will be shown below, the present results obtained
with more accurate resonance curves and the nonlocal model
represent a considerable improvement over the boomerang
model used in our previous calculations and are in reason-
ably good agreement with the most recent experimental mea-
surements.

The theoretical formulation we have used is described in
the following section. Section III presents the computational
details of the present theoretical study together with our re-
sults and, where possible, comparisons to both the previous
local complex potential model and recent experimental data.
We conclude with a brief discussion.

II. THEORETICAL FORMULATION AND
IMPLEMENTATION

As explained by Zhanget al. f12g, a simple molecular
orbital picture suffices to explain the general features of low-
energy electron-NO scattering. The ground state of NO has
2P symmetry, corresponding to a single 2p electron outside
a closed-shell core. By adding a second 2p electron, one can
form negative ion states with symmetries3S−, 1D, and 1S+,
which, by analogy with O2, are expected to be separated by
only a few electron volts. Fixed-nuclei electron-NO scatter-
ing calculations in these overall symmetries, at low energies,
produce amplitudessT matricesd that display prominent reso-
nant behavior that depends strongly on the internuclear sepa-
ration. The low-energys0–2 eVd electron-NO elastic and vi-
brationally inelastic cross sections are found to be dominated
by contributions from these negative ion resonances. To ex-
plain the rich structure observed in the various cross sec-
tions, one needs an accurate characterization of the

R-dependent resonance energies and lifetimes as well as a
suitable model for calculating the nuclear dynamics.

The nonlocal formulation we employ here, as well as the
local complex potential approach used previously by Zhang
et al., reveal an important property of these collisions, which
is that the contributions of the three resonances to the cross
section are independent. Since the resonances belong to dif-
ferent total symmetries, their contributions to the observed
cross sections are strictly additive; the resonances may over-
lap but they do not interfere. Thus the nonlocal potential
calculations can be carried out separately for each resonance
and these results can be combined to produce the physically
observed cross sections.

A. Local and nonlocal potential models

Local complex potential. We begin with a description of
the local complex potential or boomerang approach to reso-
nant collisions. The theory, which is formulated entirely
within the Born-Oppenheimer approximation, has been de-
rived in several waysf22–24g to arrive at a nuclear wave
equation that governs the nuclear dynamics associated with
the resonance state.

The nuclear wave equation at total energyE is

sE − KR − Vresdjn = fn, s4d

whereKR is the nuclear kinetic energy operator,Vres is the
anion potential,

VressRd = EressRd − iGsRd/2, s5d

andjn is the nuclear wave function associated with the elec-
tronic resonance state. The position and width of the reso-
nance that form the anion potential areEres and G, respec-
tively.

The driving term for the nuclear wave equation, or “entry
amplitude,”fn is defined as

fnsRd = SGsRd
2p

D1/2

hnsRd, s6d

wherehn is the initial vibrational wave function of the neu-
tral target.

The local complex potential model is expressed in Eqs.
s4d–s6d in its original or boomerang form, and provides the
wave functionjn from which the cross sections can be cal-
culated as described below.

Barrier penetration factor. In general, cross sections com-
puted with the entry amplitude in Eq.s6d will not have the
correct energy dependence near threshold and will thus be
inaccurate at very low scattering energiesf25,26g. This prob-
lem was addressed in the second model we consider here
which is a modification of the local complex potential model
with a barrier penetration factorf27,28g. This modification
involves the introduction of anad hocfunction of the elec-
tron momentumk into the entry and exit amplitudes.

This idea is based on identifying the angular momentuml
that corresponds to the lowest partial wave that contributes to
the resonance and enforcing a threshold law corresponding
to that value ofl. We define the quantityg as
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gsk,Rd = Hk/ksRd if k , ksRd
1 otherwise,

J s7d

wherek is the physical electron momentum, andksRd is the
local momentum at which the resonance would occur if elec-
trons were scattered by molecules with the nuclei fixed at
separationR,

k2sRd/2 = EressRd − E0sRd, s8d

with E0sRd denoting the electronic energy of the target. The
barrier penetration factor is thengl+1/2sk,Rd. With the intro-
duction of this factor, the entry amplitude will be

fnsrd = gl+1/2ski,RdSGsRd
2p

D1/2

hnsRd. s9d

The modification of Eq.s4d with Eq. s9d, and the use of
the same factor in the “exit amplitude” in the expression for
the scattering amplitude below, constitutes the local complex
potential model with barrier penetration factors.

Nonlocal model. To go beyond these simple local models,
we must make use of the well-established formulation of
nonlocal versions of these theories. A detailed exposition of
the nonlocal theory based on the projection-operator formal-
ism has been given by Domckef29g, and numerous refer-
ences to earlier work on nonlocal potential theory can be
found therein. However, in our case we are starting our cal-
culations of the nuclear dynamics with somewhat more in-
formation than those theories ordinarily employ as their
point of departure. Typically one begins with a real-valued
and square-integrable approximation to the electronic reso-
nance wave function,cressr ,Rd, wherer denotes all the elec-
tronic coordinates. The expectation value of the
sN+1d-electron Hamiltonian with respect tocresgives a real-
valued approximation to the resonance energy. The interac-
tion of cres with the continuum produces both a real-valued
“shift” and a correction that gives the imaginary part of the
resonance energy, or width of the resonance. In the general
nonlocal theory both of these corrections appear as nonlocal
and energy-dependent potentials.

Our case is different, because we have already computed
the energy and width of the resonance in a complete
electron-molecule scattering calculation. We have therefore
calculated the real part of the resonance energy itself, and no
shift correction is required. However, following the ideas of
Hazi et al. f24g it is still possible to construct a nonlocal
width function which goes correctly to the local widthGsRd
in the limit of high energies, and that can at least partly
repair some of the deficiencies of the local model.

In our nonlocal potential model we begin with Eq.s4d
with the modification of the driving term given in Eq.s9d.
We then introduce a complex, energy-dependent, nonlocal
potentialVres defined as

VressR,R8d = EressRddsR− R8d − ip o
n

open

Unskn,RdUnskn,R8d.

s10d

Eres is the real part of the potential-energy curve of the nega-
tive ion from electron-molecule scattering calculationssor

bound-state calculations in its bound regiond, and kn is the
momentum of the scattering electron when the molecule is
left in the final vibrational statehn. The sum runs over the
energetically open vibrational states of the ion.

Following Hazi et al. f24,30g we approximateUnskn ,Rd,
the matrix element coupling the resonance to the nonreso-
nant background associated with a vibrational leveln, as

Unskn,Rd = gl+1/2skn,RdSGsRd
2p

D1/2

hnsRd. s11d

At sufficiently high incident energy one can make use of
Eq. s7d and also assume that the sum over vibrational states
in Eq. s10d is complete to show that in the high-energy limit
the nonlocal potential in Eq.s10d produces the local width
function,

o
n

open

Unskn,RdUnskn,R8d =
GsRd
2p

. s12d

Therefore the nonlocal potential model we use here goes to
the local complex potential approach, with the barrier pen-
etration factor still present in the entry and exit amplitudes,
in the limit of high energies. This nonlocal model should at
least partially repair the deficiencies of the local complex
potential approach when it breaks down in the case that the
nuclear motion of the metastable anion takes place near a
crossing of the anion and the neutral potential curves
f24–26g.

Amplitudes and cross sections. The resonantT matrix for
vibrational excitation or elastic scattering is obtained by pro-
jecting the solution of Eq.s4d in any of these three models
onto the “exit amplitude”fn8 given by Eq.s6d or Eq. s9d
depending on the model,

Tnn8sEd = kfn8ujnl. s13d

Integral vibrational excitation cross sections are then given
by

sn→n8 =
4p3

ki
2 uTnn8sEdu2. s14d

Vibrational excitation and elastic cross sections calculated
for each resonance state from Eq.s14d must be multiplied by
their appropriate statistical weight and added in order to be
compared with experimental measurements. For the case of
NO, the physical cross sections are given by

sn→f
total =

1

8
s3sn→f

3
S

−

+ 2sn→f

1
D + sn→f

1
S

+

d. s15d

In the case of dissociative attachment, a solution of Eq.
s4d must be constructed that is regular at the origin and sub-
ject to purely outgoing boundary conditions. The integrated
cross sections for dissociative electron attachment from vi-
brational staten is then expressed as

sn→DA = g
2p2

kn
2

K

m
lim
R→`

ujnsRdu2, s16d

whereg is the ratio of resonance state to initial state statis-
tical weightssi.e., 3 /8 for the case of the3S− resonanced and
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K2/2m is the asymptotic kinetic energy of the dissociated
fragments with reduced massm, i.e.,

K2/2m = uE − VressRduR→`. s17d

An alternative approach to calculating dissociative attach-
ment cross sections, which we will use when interpreting the
results of our calculations of this process in NO, can be
derived by employing the principle of detailed balancef31g,
which relates theT matrix for dissociative attachment to the
T matrix for its reverse process, associative detachment,

Tn→DA = TAD→n
* . s18d

This equation leads to the following relation between the
cross sections:

meEesn→DAsEed = mEsAD→nsEd, s19d

whereme, the mass of the electron, has been written explic-
itly for clarity, but is otherwise expressed in atomic units in
this discussion.E is the total energy of the system,

E = En + Ee, s20d

whereEn is the energy of vibrational staten and Ee is the
energy of the incident electron.

From these considerationsfor from an explicit examina-
tion of the asymptotic form ofjsRd in terms of the Green’s
function for the Hamiltonian in Eq.s4dg, the cross section for
dissociative attachment can be written as

sn→DAsEed = g
4p2

Ee

m

K
ukcEufnlu2, s21d

where the scattering solutioncE satisfies the Schrödinger
equation

sE − KR − VresdcE = 0. s22d

The proper normalization ofcE will be discussed below.
Finally, we note that from these considerations it can be

seen that cross sections for associative detachment to form
NO are much smaller than the corresponding dissociative
attachment cross sections. This point is easily deduced from
Eq. s19d, where the value of the reduced mass of NOsm
=13 614d will imply that sAD→n is approximately four orders
of magnitude smaller thansn→DA.

B. Numerical solution of the Schrödinger equation

In order to solve the equations that govern the electron-
molecule collision processes that are relevant to this study,
we have made use of a finite-element method, implemented
using a discrete variable representationsDVRd f32g. In the
case of dissociative attachment, the generalization of this
method to use exterior complex scalingsECSd gives the ad-
ditional advantage of avoiding the need for explicit imposi-
tion of asymptotic boundary conditions. Details of this very
efficient numerical representation, as well as important pre-
vious developments of the DVR method, can be found in the
work of Rescigno and McCurdyf32g, the recent review of
McCurdy et al. f33g, and the references therein. Here we
only mention some of its main features and how they relate
to the present study.

A great advantage of the DVR approach is that any local
operator, like the potential in the local potential model, has a
diagonal representation. In this approach the kinetic energy
is nondiagonal, but its matrix elements have simple analytic
forms. Although our nonlocal potential will be nondiagonal
in the DVR, its matrix elements can be trivially constructed
in terms of the factorsUnskn ,Rd in Eq. s11d evaluated at
pointsR on the DVR grid. Thus the nonlocal potential model
is no more difficult to implement using the finite element
DVR approach than the local potential case.

Both of the processes that are investigated here can be
represented by Eq.s4d. In the case of vibrational excitation,
the solutionjnsRd will be square integrable, and the finite
element DVR approach using real-valued coordinates will
constitute an adequate approach to solving Eq.s4d. Dissocia-
tive electron attachment, on the other hand, requires a solu-
tion of Eq. s4d that behaves outside the interaction region as
a purely outgoing wave. Exterior complex scaling allows one
to easily construct such a solution without detailed consider-
ation of asymptotic boundary conditions. The origins of this
complex coordinate scaling have been discussed extensively
in the recent review by McCurdyet al. f33g. The ECS trans-
formation which we apply to Eq.s4d is given by

R→ TsRd ; HR R, R0

R0 + sR− R0deih Rù R0
J, s23d

whereR is the internuclear distance, whileR0 andh are fixed
parameters of the transformation. The transformed
Schrödinger equation is then solved on a grid that extends
beyondR0, into the region in which the outgoing wave falls
off exponentially. The combined finite-element DVR tech-
nique offers a practical and accurate method for implement-
ing the ECS transformation. We refer the interested reader to
Ref. f33g for further details. Making the radiusR0 large
enough to enclose the entire interaction region allows the
collision dynamics to be extracted from the region inside that
radius, where coordinates are real. This transformation, as
mentioned above, eliminates the need for explicit enforce-
ment of asymptotic boundary conditions and produces a so-
lution with the correct boundary conditions automatically.

To construct the wave function corresponding to associa-
tive detachment we must solve Eq.s22d. To do so using the
ECS transformation, we first write the radial scattering solu-
tion as the sum of a free functionc0 and a scattering wave
csc,

cE = c0 + csc. s24d

With the cross section defined by Eq.s21d, c0 is just sinsKRd.
Thus the driven Schrödinger equation becomes

sE − KR − Vresdcsc= Vresc0 s25d

which has the same form as Eq.s4d and can be solved in the
same way.

C. Fixed-nuclei resonance curves

Zhanget al. f12g carried out fixed-nuclei scattering calcu-
lations using the complex Kohn variational method and ex-
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tracted resonance energies and lifetimes for the negative ion
states from Breit-Wigner fits of the relevant eigenphase
sums. The trial wave functions in their calculations were
constructed using modest CI expansions. The molecular or-
bitals were obtained by averaging the density matrices of the
target and resonance states in order to strike a balance be-
tween correlation effects in the neutral and anion states. The
resonance widths from that earlier study were also employed
in the present calculations.

Since the quasibound vibrational levels of the NO− states
overlap, the electron-NO cross sections below 2 eV are
highly structured. To meaningfully compare calculated cross
sections with measured values requires that the relative po-
sitions of the anion states with respect to the target states be
known with an accuracy of less than 0.1 eV. Practical con-
siderations make it difficult to achieve such accuracy in scat-
tering calculations, even with fairly elaborate trial wave
functions. Electronic structure calculations were therefore
carried out to better position the negative ion and target po-
tential curves. Zhanget al. had previously employed
coupled-cluster, single- and double-excitation calculations
with a noniterative triples correctionfCCSDsTdg. In the
present work, we used large-scale configuration-interaction
methods. CC calculations are size-consistent and are gener-
ally accurate in calculating energy differences between the
lowest states of systems with different numbers of electrons,
as in the case of NO and NO−. On the other hand, multiref-
erence configuration-interactionsMRCId calculations will
give accurate results for the relative energies of the different
resonance states, providing in this way better potential
curves for the calculation of dissociative electron attachment
cross sections.

III. CALCULATIONS AND RESULTS

For the present study, multireference single- and double-
excitation calculationssMRCISDd f34g were performed on
the NO ground state and the3S−, 1D, and 1S+ anion states
using one-electron orbitals generated from multireference
self-consistent fieldsMCSCFd calculations for each state.
The active space for the MCSCF calculations, as well as the
reference space for the CI calculations, consisted of all the
orbitals of the 2p shells of O and N, with the valence elec-
trons distributed in all possible ways. The neutral and anion
potential curves obtained from these CI calculations are
shown in the top panel of Fig. 1. For all the states, the rela-
tive shapes of the curves and their equilibrium internulear
distances agree with the earlier CC values. The potential
curves for the neutral ground state and the3S− anion state
are very close to the CC values previously obtained by
Zhanget al. scf. Fig. 6 of Ref.f12gd, whereas the1D and1S+

anion curves lie below the previous curves by,0.24 and
0.26 eV, respectively. These results give a1D curve that is in
better agreement with the semiempirical result obtained by
Teillet-Billy and F. Fiquet-Fayardf21g, while the results for
the 1S+ state are consistent with experimental findings of
Randellet al. f6g.

The top panel of Fig. 1 illustrates the calculated neutral
and anion potential curves, together with the real parts of the

vibrational levels associated with each curve. For the anion
states, both the real and imaginary parts of each resonance,
the latter obtained from the earlier complex Kohn calcula-
tions, were used in computing the vibrational levels. While
the present potential curves give results in better agreement
with measured values than the earlier CC results of Zhanget
al., a final small adjustment of the resonance curves was
carried out to better compare the theoretical cross sections
with experiment. The3S− curve was lowered by 65 meV,
which brings the first three peaks in the calculated elastic
cross section into good agreement with the positions of the
corresponding peaks in Allan’s recent high-resolution mea-
surementsf9,13g. The 1D curve was lowered by 83 meV,
based again on Allan’s high-resolution elastic as further ex-
plained below. Finally, the1S+ was lowered by,0.15 eV so
that its asymptotic value at large internuclear distance coin-
cided with that of the1D state. The shifted curves, which
were used in all the calculations described below, are shown
in the bottom panel of Fig. 1. It is worth noting that in their
semiempirical analysis of Troncet al.’s data, Teillet-Billy
and F. Fiquet-Fayard assumed a coincidence of the3S−sn

FIG. 1. sColor onlined NO and NO− potential curves and vibra-
tional levels. Solid curves:2P neutral ground state; dashed curves:
3S− anion; dotted curves:1D anion; dash-dot curves:1S+ anion. Top
panel: curves obtained from configuration-interaction calculations;
bottom panel: shifted CI curvesssee textd. Internuclear distances are
given in atomic units, whereao=5.291 7721310−11 m is the Bohr
radius. Energies are in units of eV=1.602 1765310−19 J.
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=7d and 1Dsn=2d levels as a criterion to position the1D
curve. Such a criterion, however, is invalidated by the fact
that there are significant shifts, which change with the ob-
served exit vibrational level, between the actual peak posi-
tions in the cross sections and their expected positions based
on the vibrational energy-level values. These shifts arise as a
consequence of the finite lifetimes of the anion states against
autodetachment.

A. Elastic scattering and vibrational excitation

Figure 2 shows then=0→1 vibrational excitation cross
sections calculated using three different models for treating
the nuclear dynamics described in Sec. II A:sid the local
complex potential model, as used by Zhanget al. in their
earlier calculations,sii d the local complex potential model

with barrier penetration factors included in the entry and exit
amplitudes and,siii d the nonlocal model. For clarity, only the
3S− contribution to the cross section is shown. As expected,
the cross sections computed without inclusion of barrier pen-
etration factors are qualitatively incorrect at low energy and
significantly overestimate the first few peaks near threshold.
This behavior becomes even more pronounced in the higher
excitation cross sectionssnot shownd. The introduction of
barrier penetration factors, both in the local and nonlocal
approximations, produces the correct behavior of the cross
sections at threshold. The latter two models produce similar
results, with the nonlocal model giving slightly larger peak
values in the cross sections at low energy. As the energy
increases, and more vibrational states become energetically
available, all three approximations yield the same cross sec-
tions, as expected. These trends were also seen in the higher
excitation cross sections. These results serve to quantify the
breakdown of the simple local complex potential model in
the present case where the vibrational levels of the3S− anion
are energetically close to those of the neutral target, which
invalidates several key assumptions used in deriving the lo-
cal complex potential modelf24,26g. All subsequent results
we will present, for both vibrational excitation and dissocia-
tive electron attachment, were obtained using the nonlocal
potential model.

Figure 3 shows the individual resonance contributions to
the elastic andn=0→1,2,3vibrationally inelastic cross sec-
tions obtained with the nonlocal model and the shifted CI
potential curves described above. The3S− and1D cross sec-
tions both show pronounced boomerang structure while the
1S+ resonance gives only a broad, structureless contribution
to the cross sections. The3S− peaks are narrower than the1D
peaks, reflecting the longer autodetachment lifetimesinverse
widthd of the 3S− negative ion state. The3S− and 1D reso-
nance peaks overlap strongly above 0.75 eV, which results in
total vibrational excitation cross sections with pronounced
irregularities. The basic structure of these cross sections, as
Zhanget al. have pointed out, are readily explained by ex-
amination of the neutral and anion potential curves and vi-

FIG. 2. sColor onlined 3S− symmetry component of thee−-NO
n=0→1 vibrational excitation cross section. Comparison of differ-
ent theoretical models for treating the nuclear dynamics. Solid
curve: nonlocal model; solid curve with stars: local complex poten-
tial model with inclusion of barrier penetration factors; dash-dot:
local complex potentialsboomerangd model. Cross sections are
given in atomic unitssao

2=2.800 2852310−21 m2d and energies are
in units of electron volts.

FIG. 3. sColor onlined Contribution of indi-
vidual resonances to the elastic and vibrationally
inelastic cross sections. Solid curves: total cross
sections; dashed curves:3S− symmetry contribu-
tions; dash-dot curves:1D symmetry contribu-
tions; double dash-dot curves:1S+ symmetry
contributions. Individual symmetry contributions
include statistical weights given in Eq.s15d.
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brational levelssFig. 1d. Below 0.5 eV, the1D resonance
cannot be excited; the three lowest peaks in the elastic cross
section arise solely from the3S− state. This fact allowed us
to fix the relative positions of the neutral and3S− states by
comparing the positions of the calculated and measured elas-
tic peaks. In the case of the1D resonance, the second peak in
the 1D elastic cross section does not overlap any3S− peaks
and was therefore used to position the1D resonance curve, as
explained above. Note that the lowest3S− vibrational state is
bound and lies outside the Franck-Condon region of the neu-
tral ground level. The first peak in the elastic cross section
arises from then=1 level of the3S− anion. A striking point
to note about these cross sections is the fact that the peaks
arising from the3S− anion occur at energies close to the
difference between the neutral and anion vibrational levels
and appear at roughly the same energy in different exit chan-
nels. By contrast, the1D peaks in the elastic cross section
appear at energies below the anion vibrational energy levels
and shift to higher energy as the excitation level increases.
This behavior is caused by the shorter lifetime of the1D
state.

Figure 4 compares our calculated elastic and vibrationally
inelastic cross sections with the recent experimental mea-
surements of Jelisavcicet al. f8g and Allan f13g. All data
shown are on an absolute scale with no internormalization.
Jelisavcicet al. obtained integrated cross sections from their
angular differential measurements by using a multiparameter
phase shift analysis to extrapolate their cross sections to for-
ward and backward angles. Allan made differential measure-
ments at high resolution and was able to measure cross sec-
tions for individual fine-structure levels of the target
molecule. To compare with our calculations, which do not
treat spin-orbit effects, and with the lower resolution mea-
surements of Jelisavcicet al., we have plotted Allan’s cross
sections summed over allDV sspin-orbitd transitions.

Allan took absolute measurements at a single angle
s135°d, and in Fig. 4 his results were simply multiplied by
4p for this comparison. To see why this is a reasonable ap-
proximation to the integral cross section, it is instructive to

consider the angular dependence of theresonantcontribution
to vibrational excitation cross section. Since the ground state
of NO is doubly degenerate, we can write the electronically
elasticT matrix sfor a particular vibrational transitiond in the
following schematic notation:

T = ST−1,−1 T−1,+1

T+1,−1 T+1,+1D , s26d

where the superscripts on the matricesTM8,M denote initial
and final channels labeled by theMz quantum numbers of the
target. Each of these blocks is itself a square matrix whose
dimension is determined by the number of partial waves,
labeled bysl ,md, used to expand the fixed-nuclei wave func-
tion. The differential cross section associated with a particu-
lar transition is then

dsM8,M

dV
= o

l,l8

s2pd4

ki
2

1

8p2 E uYm8,l8
mol sk8d*Tl8m8,lm

M8,M Yl,m
molskdu2dv,

s27d

where the spherical harmonics refer to the body frame of the
target and the integration overv is the average over molecu-
lar orientations.

In the simplest model, we assume that for all three reso-
nances the electron is scattered in ap-wave sl = l8=1d with
mz= ±1. Which mz component of the incident or scattered
electron to associate with which target channel depends on
which of the three resonances is in question. With these as-
sumptions, the angular dependence of the cross sections can
be obtained in closed form. We can now follow the logic of
Dube and Herzenbergf23g to perform the necessary transfor-
mation to the lab frame and integrate over molecular orien-
tations. The result is

dsM8,M

dV
=

2p2

ki
2 uTM8,Mu2

3

40
f7 + coss2udg s28d

and has the same form for all four possible choices of M8

FIG. 4. sColor onlined Comparison of theory
and experiment for elastic and vibrationally ex-
cited cross sections. Solid dark curves: present
results; dashed curves: experimental measure-
ments of Jelisavcicet al. f8g; solid grey curves:
experimental measurements of Allan34p f13g.
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and M in Eq. (26) and for all three resonances. When Eq.
s28d is integrated over the scattering angles,u and f, it re-
produces Eq.s14d.

Based on this analysis, all three resonance contributions
to the integral cross section are expected to have a fairly flat
angular distribution determined by the factor 7+coss2ud. An
alternative treatment, that does not assume a single partial
wave for the scattered electron, was carried out using the
computedT-matrix elementssat the equilibrium internuclear
distanced from the complex Kohn scattering calculations
computed exactly on resonance and evaluating Eq.s27d nu-
merically. Such a calculation gives angular dependences for
the 3S− and 1D cross sections that are slightly different, but
again nearly isotropic, as can be seen in Fig. 5. In any case,
fixing u to be 135°, and multiplying the differential cross
section by 4p gives Eq.s14d to within a few percent, so this
approximate conversion of Allan’s data to give integrated
cross sections should be reasonable.

The calculated elastic cross sections shown in Fig. 4 in-
clude the nonresonant background contributions from1,3P
symmetry calculated by Zhanget al. f12g. In the case of
elastic scattering, there is excellent agreement between the
two sets of measurements above 0.8 eV, whereas the peak
cross-section values near 0.45 and 0.6 eV measured by Allan
f9,13g are relatively larger than those measured by Jelisavcic
et al. f8g. The agreement with theory is also rather good, the
principal difference being a somewhat larger value for the
background cross section given by theory. The calculated
elastic cross sections show little structure above 1.5 eV,
while Allan’s measurements show weak structure out to
2.0 eV. Both Allan and Randellet al. f6g have suggested that
the 1S+ resonance may be responsible for structure above
1.5 eV, but our calculations predict the width of this state to
be too large to give any boomerang structure.

The vibrational excitation cross sections have irregular
structures, which is the result of overlapping contributions
from the different resonance states. While the two sets of
measured values are in reasonable agreement above 1.5 eV,
they show noticeable differences at lower energies. The most

striking difference is that the lowest few peaks in then=0
→1 and n=0→2 cross sections, while prominent in both
Allan’s measurements and in our calculations as well, are
strongly suppressed in the Jelisavcicet al. measurements.
The magnitude of our calculated cross sections overall ap-
pears to be in better agreement with Allan’s measurements,
but we must again empasize that Allan’s differential cross
sections at a single angle were multiplied by 4p. The agree-
ment between theory and experiment for then=0→3 cross
section is excellent.

The principal discrepancy between theory and experi-
ment, which is most apparent in the case of then=0→2
cross section, is the fact that the calculated1D peaks are too
broad. For example, the broad1D peak at 0.8 eV in the cal-
culatedn=0→2 cross section obscures the3S− peaks near
0.65 and 0.9 eV that are clearly seen in Allan’s measure-
ments. The calculated error in the1D peaks is undoubtedly
caused by an overestimate of the electronic resonance width
of the1D anion. The resonance widths came from earlierf12g
fixed-nuclei scattering calculations, while the resonance en-
ergies came from accurate CI calculations and were further
adjusted as described above. For the3S− state, the scattering
calculations and the CI calculations gave very similar reso-
nance curves. In the case of the1D state, our shifted anion
curve lies,0.3 eV below the scattering results. We would
expect the electronic width of the1D state to therefore be
smaller than the results given by our fixed-nuclei scattereing
calculations. Despite some qualitative differences between
theory and experiment, it is clear that the overall features are
properly displayed by these calculations and that the nonlo-
cal model gives a good description of the vibrational excita-
tion dynamics in this system.

Figure 6 shows our calculated grand total cross sections
sthe sum of the integrated elastic and the vibrationally inelas-
tic cross sectionsd and the experimental measurements of
Alle et al. f5g, obtained by high-resolution time-of-flight
spectroscopy, and of Zeccaet al. f35g, who analyzed previ-
ous experimental measurementssf3,36gd. For reference, our
grand total cross sections for selected energies are also tabu-
lated in Table I. The authors will provide tabulated values for

FIG. 5. sColor onlined Angular dependence of resonant cross
sections. With the assumption of a single partial wave, the resulting
distribution iss7+cos 2Qd for both 3S− and1D cross sections. The
angular distributions for3S− and1D are different when more partial
waves are used in the analysisssee textd.

FIG. 6. sColor onlined Comparison of theory and experiment for
grand total cross sections. Solid dark curve: present results; dash-
dot curve: experimental measurements of Alleet al. f5g; solid grey
curve: experimental measurements of Zeccaet al. f35g.
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TABLE I. Calculatede−-NO grand total cross sectionssGTCS’sd as a function of energy. Cross sections
are in units of 10−16 cm2 and energies are in electron volts.

Energy GTCS Energy GTCS Energy GTCS

0.1000 0.8320 0.7354 19.4719 1.3709 21.3185

0.1127 3.2252 0.7481 22.3429 1.3836 21.4026

0.1254 20.5018 0.7608 26.9145 1.3963 21.5218

0.1381 0.3518 0.7735 31.2134 1.4090 21.5888

0.1508 0.06775 0.7862 30.1425 1.4217 21.5626

0.1635 0.1200 0.7989 25.5610 1.4344 21.4518

0.1762 0.2485 0.8117 22.0260 1.4471 21.2770

0.1889 0.4699 0.8244 20.2311 1.4598 21.0570

0.2016 0.7435 0.8371 19.6350 1.4725 20.8099

0.2143 1.0987 0.8498 19.7636 1.4852 20.5546

0.2270 1.5948 0.8625 20.3278 1.4979 20.3148

0.2397 2.3645 0.8752 21.1866 1.5107 20.1146

0.2525 3.7583 0.8879 22.3143 1.5234 19.9703

0.2652 6.9256 0.9006 23.8366 1.5361 19.8814

0.2779 18.7501 0.9133 25.9359 1.5488 19.8261

0.2906 61.2796 0.9260 28.1865 1.5615 19.7778

0.3033 10.1580 0.9387 28.9980 1.5742 19.7195

0.3160 3.1994 0.9515 27.5446 1.5869 19.6446

0.3287 2.2709 0.9642 25.3023 1.5996 19.5518

0.3414 2.3782 0.9769 23.4854 1.6123 19.4388

0.3541 2.8238 0.9896 22.2825 1.6250 19.3062

0.3668 3.4695 1.0023 21.6604 1.6377 19.1486

0.3795 4.3272 1.0150 21.5018 1.6505 18.9713

0.3923 5.5048 1.0277 21.7097 1.6632 18.7956

0.4050 7.2673 1.0404 22.2205 1.6759 18.6307

0.4177 10.2128 1.0531 23.0255 1.6886 18.4817

0.4304 16.1795 1.0658 24.1311 1.7013 18.3470

0.4431 30.1699 1.0786 25.3802 1.7140 18.2227

0.4558 44.1474 1.0913 26.2417 1.7267 18.1037

0.4685 23.2452 1.1040 26.2254 1.7394 17.9878

0.4812 11.6303 1.1167 25.4906 1.7521 17.8734

0.4939 8.2425 1.1294 24.4993 1.7648 17.7592

0.5066 7.3877 1.1421 23.5439 1.7775 17.6435

0.5193 7.4823 1.1548 22.7453 1.7903 17.5255

0.5321 8.0750 1.1675 22.1560 1.8030 17.4033

0.5448 9.0707 1.1802 21.8044 1.8157 17.2778

0.5575 10.5562 1.1929 21.7108 1.8284 17.1513

0.5702 12.8291 1.2056 21.8847 1.8411 17.0259

0.5829 16.5922 1.2183 22.3224 1.8538 16.9032

0.5956 23.2862 1.2311 22.9361 1.8665 16.7844

0.6083 33.4398 1.2438 23.5053 1.8792 16.6692

0.6210 36.5577 1.2565 23.8026 1.8919 16.5574

0.6337 27.3836 1.2692 23.7780 1.9046 16.4486

0.6464 20.3016 1.2819 23.5242 1.9173 16.3426

0.6591 17.1405 1.2946 23.1458 1.9301 16.2385

0.6719 15.9589 1.3073 22.7151 1.9428 16.1355

0.6846 15.7470 1.3200 22.2494 1.9555 16.0327

0.6973 16.0603 1.3327 21.8407 1.9682 15.9254
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other cross sections upon request. As can be seen in Fig. 3,
the most significant contribution to the grand total cross sec-
tion derives from the elastic cross section, with vibrational
excitation cross sections making a smaller contribution. With
the exception of a slight overestimate of the nonresonant
background, our calculated cross sections provide a good
description of the elastic cross sections and hence of the
grand total cross sections.

B. Dissociative electron attachment

The process of dissociative electron attachment to NO
studied in the present investigation takes place via the reac-
tion channele+NO→O−s2Pd+Ns4Sd, which is associated
with the 3S− resonance. Figure 7 shows the dissociative elec-
tron attachment cross sections calculated using the nonlocal
potential model as described in Sec. II A. The numerical so-
lution of the working equations of this process was carried
out using the finite-element DVR implementation of ECS, as

described in Sec. II B. The two panels of Fig. 7 show that the
cross sections increase by several orders of magnitude as the
vibrational state from which the dissociation takes place in-
creases. We can see from these calculations that dissociative
attachment proceeding from the vibrational ground statesnot
visible on the scale of the figured would lead to cross sections
that are too small to be detectable. However, dissociative
attachment arising from vibrationally excited states should
be measurable, provided the initial vibrational level is suffi-
ciently high. Table II lists maximum values of dissociative
attachment cross sections from each vibrationally excited
state and the electron energy at which this cross section peak
is produced.

It is interesting to investigate the origin of this dramatic
enhancement of the dissociative attachment cross section
with vibrational excitation. The clearest way to display the

TABLE I. sContinued.d

Energy GTCS Energy GTCS Energy GTCS

0.7100 16.7254 1.3454 21.5302 1.9809 15.8159

0.7227 17.7824 1.3581 21.3518 2.0000 15.6514

FIG. 7. Dissociative electron attachment cross sections. Top
panel: cross sections from vibrationally excited states 5–9. Bottom
panel: cross sections from vibrationally excited states 9–23.

TABLE II. Maximum values of calculated dissociative electron
attachment cross sectionssDACS’sd from vibrationally excited
statessnid of NO and energies of the incident electron at which
these cross sections are produced. Cross sections are in units of
10−16 cm2 and energies are in electron volts.

ni Energy DACS

0 4.854 8497 2.692 1455310−5

1 4.594 5892 7.389 4421310−5

2 4.414 4088 1.997 2127310−5

3 4.374 3687 5.016 7238310−5

4 3.773 7675 4.925 6797310−5

5 3.553 5471 1.965 6159310−4

6 3.373 3667 4.605 1432310−4

7 3.173 1663 1.085 2484310−3

8 2.932 9259 1.963 6015310−3

9 2.712 7054 4.961 709310−3

10 2.512 5050 1.458 3266310−2

11 2.312 3046 3.648 9216310−2

12 2.132 1242 7.373 6554310−2

13 1.951 9439 0.129 632 21

14 1.771 7635 0.204 932 59

15 1.611 6032 0.290 1275

16 1.451 4429 0.367 416 63

17 1.331 3226 0.421 704 41

18 1.231 2224 0.448 168 16

19 1.211 2024 0.450 419 18

20 1.211 2024 0.436 572 56

21 1.211 2024 0.422 077 84

22 1.231 2224 0.410 335 54

23 1.231 2224 0.397 5291
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physics of that enhancement is to view the process via Eq.
s21d which gives the cross section in terms of the wave func-
tion, cE, associated with the reverse process in which an O−

and N atom collide. The relevant wave functions and the
associated potential curves are shown in Fig. 8 where it is
particularly important to note the role of the imaginary part
of the resonance potential curve. Vibrational wave functions
of neutral NO are plotted specifically for vibrational states
n=0 and 15 in the right panel. Also shown in this panel are
three scattering solutions of Eq.s22d for total energies given
by Eq. s20d of E=0.1, 0.5, and 1.0 eV.

A key point is that close to the classical inner turning
points the scattering functionscE appear suppressed due to
the imaginary part of the resonance potential, −iGsRd /2.
Thus there is no large peak in the scattering wave function
near the classical turning point, and the enhancement of the
cross section is not associated with any simple classical ef-
fect.

Evaluation of the dissociative attachment cross section us-
ing Eq. s21d requires the calculation the integral of the prod-
uct of the scattering functioncE and the entry amplitude
from Eq. s6d, fn. Recall that the entry amplitude is propor-
tional to the initial vibrational wave function of the neutral
multiplied byGsRd. The left panel of Fig. 8 is an enlargement
of a selected area of the right panel that shows the entry
amplitudesf0sRd,f15sRd associated withn=0 and 15. Also
enlarged in this panel are the scattering solutionscE. We can
see that in the case of low vibrational states, the product of a
rapidly oscillating scattering functioncE and a smooth vibra-
tional wave functionfe.g., f0sRdg, will give a very small
overall integral. For higher vibrational states,fn oscillates
with a frequency closer to that ofcE, resulting in a larger

integral. In this way, the cross sections for dissociative at-
tachment are rapidly enhanced as the initial vibrational quan-
tum numbern increases. The resulting cross sections for dis-
sociation proceeding from vibrational statesn=0 multiplied
by a factor of 5000fsDAsn=0dg, andn=15 fsDAsn=15dg, are
also shown in the left panel of Fig. 8 as a function of the total
energyE.

Another noticeable characteristic of the calculated disso-
ciative attachment cross sections is the change in their shape
with the decrease of the threshold energy onset with increas-
ing vibrational levels. This feature can be understood by tak-
ing into account the fact that the barrier penetration factor
introduced in our equations will affect the cross sections only
at electron energies with momentak that are lower than the
local momentumksRd in Eq. s7d. As the energy of the vibra-
tional level from which the dissociation takes place in-
creases, the threshold energy, and thus the incident electron
momentum needed for the the dissociation to occur, de-
creases. Atn*15, the introduction of the barrier penetration
factor gives rounded shape to dissociative attachment cross
sections near threshold, whereas the cross sections from
lower vibrational states are unaffected by the barrier penetra-
tion factor.

IV. DISCUSSION

We have presented electron-NO elastic and vibrational ex-
citation cross sections for incident electron energies between
0 and 2 eV. These calculations were performed using a non-
local potential model to describe the nuclear dynamics, to-
gether with a set of resonance potential curves that are more
accurate than what we had previously employedf12g. The

FIG. 8. sColor onlined Bottom panel: potential-energy curves of NO and of the3S− resonancessolid curvesd, and vibrational levels of the
neutral targetsdotted linesd. Also shown are the vibrational wave functionsh0sRd andh15sRd and the scattering solution of Eq.s22d, cE, at
E=0.1, 0.5, and 1.0 eVssolid curvesd. top panel: enlargement of the selected region of the right panel. In addition to the wave functions
mentioned above, the entry amplitudesf0sRd andf15sRd fsee Eq.s6dg are shown. Vibrationally excited DA cross sections are plotted forn=0
fsDAsn=0dg35000, and forn=15 fsDAsn=15dg. Internuclear distances are given in atomic units and energy in units of electron volts.
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complex-valued potential curves were obtained by combin-
ing large-scale configuration-interaction calculations for the
resonance positions with fixed-nuclei, complex Kohn calcu-
lations for determining the resonance lifetimes. The resulting
low-energy scattering cross sections are dominated by shape
resonance contributions associated with the3S−, 1D, and, to
a lesser extent,1S+ states of NO− and display pronounced,
overlapping boomerang structures that give irregularly
shaped vibrational excitation cross sections.

The inclusion of barrier penetration factors in these cal-
culations, in both the entry and exit amplitudes, enforces the
correct threshold behavior in the resonant cross sections for
vibrational excitation and removes the spurious threshold
peaks that were seen in earlier boomerang calculations.
However, in contrast to what was seen in earlier experiments
f8g, we do not find a complete supression of the lowest few
peaks in cross sections for exciting higher vibrational levels,
but instead find encouragingly good agreement with the re-
cent experiments of Allanf9,13g.

We have also investigated dissociative electron attach-
ment to NO via the3S− negative ion resonance which gives

ground state Ns4Sd+O−s2Pd. Our results show that the disso-
ciative attachment cross sections in this channel that origi-
nate from the ground vibrational state of NO are extremely
small, as confirmed by several experimental studiesf17–20g.
However, the dissociative attachment cross section is pre-
dicted by these calculations to increase by several orders of
magnitude when the dissociation takes place from vibrational
excited states of NO. We predict that dissociative attachment
cross sections producing ground-state atomic products
should be measurable starting from vibrational levels above
approximatelyn=10.
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